Abstract
Bcr is a multifunctional protein that is the fusion partner for Abl (p210 Bcr-Abl) in Philadelphia chromosome positive leukemias. We have identified c-Myc as a binding partner for Bcr in both yeast and mammalian cells. We are also able to observe interactions between natively expressed c-Myc and Bcr in leukemic cell lines. Although Bcr and Max have overlapping binding sites on c-Myc, Bcr cannot interact with Max, or with the c-Myco•Max heterodimer. Bcr expression blocks activation of c-Myc-responsive genes, as well as the transformed phenotype induced by coexpression of c-Myc and H-Ras, and this finding suggests that one function of Bcr is to limit the activity of c-Myc. However, Bcr does not block c-Myc function by preventing its nuclear localization. Interestingly, increased Bcr dosage in COS-7 and K-562 cells correlates with a reduction in c-Myc protein levels, suggesting that Bcr may in fact be limiting c-Myc activity by regulating its stability. These data indicate that Bcr is a novel regulator of c-Myc function whose disrupted expression may contribute to the high level of c-Myc protein that is observed in Bcr-Abl transformed cells.
Original language | English (US) |
---|---|
Pages (from-to) | 437-441 |
Number of pages | 5 |
Journal | Current Biology |
Volume | 13 |
Issue number | 5 |
DOIs | |
State | Published - Mar 4 2003 |
All Science Journal Classification (ASJC) codes
- Neuroscience(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Agricultural and Biological Sciences(all)