The cytoplasmic tail slows the folding of human immunodeficiency virus type 1 Env from a late prebundle configuration into the six-helix bundle

Levon G. Abrahamyan, Samvel R. Mkrtchyan, James Binley, Min Lu, Grigory B. Melikyan, Fredric S. Cohen

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

Effects of the cytoplasmic tail (CT) of human immunodeficiency virus type 1 Env on the process of membrane fusion were investigated. Full-length Env (wild type [WT]) and Env with its CT truncated (ΔCT) were expressed on cell surfaces, these cells were fused to target cells, and the inhibition of fusion by peptides that prevent Env from folding into a six-helix bundle conformation was measured. For both X4-tropic and R5-tropic Env proteins, ΔCT induced faster fusion kinetics than did the WT, and peptides were less effective at inhibiting ΔCT-induced fusion. We tested the hypothesis that the inhibitory peptides were less effective at inhibiting ΔCT-induced fusion because ΔCT folds more quickly into a six-helix bundle. Early and late intermediates of WT- and ΔCT-induced fusion were captured, and the ability of peptides to block fusion when added at the intermediate stages was quantified. When added at the early intermediate, the peptides were still less effective at inhibiting ΔCT-induced fusion but they were equally effective at preventing WT- and ΔCT-induced fusion when added at the late intermediate. We conclude that for both X4-tropic and R5-tropic Env proteins, the CT facilitates conformational changes that allow the trimeric coiled coil of prebundles to become optimally exposed. But once Env does favorably expose its coiled coil to inhibitory peptides, the CT hinders subsequent folding into a six-helix bundle. Because of this facilitation of maximal exposure and hindrance of bundle formation, the coiled coil is optimally exposed for a longer time for WT than for ΔCT. This accounts for the greater peptide inhibition of WT-induced fusion.

Original languageEnglish (US)
Pages (from-to)106-115
Number of pages10
JournalJournal of virology
Volume79
Issue number1
DOIs
StatePublished - Jan 2005
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint

Dive into the research topics of 'The cytoplasmic tail slows the folding of human immunodeficiency virus type 1 Env from a late prebundle configuration into the six-helix bundle'. Together they form a unique fingerprint.

Cite this