TY - JOUR
T1 - The effects of benralizumab on airway geometry and dynamics in severe eosinophilic asthma
T2 - a single-arm study design exploring a functional respiratory imaging approach
AU - Genofre, Eduardo
AU - Carstens, Donna
AU - DeBacker, Wilfried
AU - Muchmore, Patrick
AU - Panettieri, Reynold A.
AU - Rhodes, Kirsty
AU - Shih, Vivian H.
AU - Trudo, Frank
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Background: Severe eosinophilic asthma (SEA) is characterised by elevated blood/sputum eosinophil counts and airway inflammation, which can lead to mucus plug-mediated airway obstruction, increased exacerbation frequency, declines in lung function, and death. Benralizumab targets the alpha-subunit of the interleukin-5 receptor found on eosinophils, leading to rapid and near complete eosinophil depletion. This is expected to result in reduced eosinophilic inflammation, reduced mucus plugging and improved airway patency and airflow distribution. Methods: BURAN is an interventional, single-arm, open-label, uncontrolled, prospective, multicentre study during which participants will receive three 30 mg subcutaneous doses of benralizumab at 4-week intervals. This study will use functional respiratory imaging (FRI), a novel, quantitative method of assessing patients’ lung structure and function based on detailed, three-dimensional models of the airways, with direct comparison of images taken at Weeks 0 and 13. Patients aged ≥ 18 years with established SEA who may be receiving oral corticosteroids and/or other asthma controller medications, who are inadequately controlled on inhaled corticosteroid-long-acting β2-agonist therapies and who have had ≥ 2 asthma exacerbations in the previous 12 months will be included. The objectives of BURAN are to describe changes in airway geometry and dynamics, measured by specific image-based airway volume and other FRI endpoints, following benralizumab therapy. Outcomes will be evaluated using descriptive statistics. Changes in FRI parameters, mucus plugging scores and central/peripheral ratio will be quantified as mean percent change from baseline (Week 0) to Week 13 (± 5 days) and statistical significance will be evaluated using paired t-tests. Relationships between FRI parameters/mucus plugging scores and conventional lung function measurements at baseline will be assessed with linear regression analyses for associations between outcomes, scatterplots to visualise the relationship, and correlation coefficients (Spearman’s rank and Pearson’s) to quantify the strength of these associations. Conclusions: The BURAN study will represent one of the first applications of FRI—a novel, non-invasive, highly sensitive method of assessing lung structure, function and health—in the field of biologic respiratory therapies. Findings from this study will increase understanding of cellular-level eosinophil depletion mechanisms and improvements in lung function and asthma control following benralizumab treatment.
AB - Background: Severe eosinophilic asthma (SEA) is characterised by elevated blood/sputum eosinophil counts and airway inflammation, which can lead to mucus plug-mediated airway obstruction, increased exacerbation frequency, declines in lung function, and death. Benralizumab targets the alpha-subunit of the interleukin-5 receptor found on eosinophils, leading to rapid and near complete eosinophil depletion. This is expected to result in reduced eosinophilic inflammation, reduced mucus plugging and improved airway patency and airflow distribution. Methods: BURAN is an interventional, single-arm, open-label, uncontrolled, prospective, multicentre study during which participants will receive three 30 mg subcutaneous doses of benralizumab at 4-week intervals. This study will use functional respiratory imaging (FRI), a novel, quantitative method of assessing patients’ lung structure and function based on detailed, three-dimensional models of the airways, with direct comparison of images taken at Weeks 0 and 13. Patients aged ≥ 18 years with established SEA who may be receiving oral corticosteroids and/or other asthma controller medications, who are inadequately controlled on inhaled corticosteroid-long-acting β2-agonist therapies and who have had ≥ 2 asthma exacerbations in the previous 12 months will be included. The objectives of BURAN are to describe changes in airway geometry and dynamics, measured by specific image-based airway volume and other FRI endpoints, following benralizumab therapy. Outcomes will be evaluated using descriptive statistics. Changes in FRI parameters, mucus plugging scores and central/peripheral ratio will be quantified as mean percent change from baseline (Week 0) to Week 13 (± 5 days) and statistical significance will be evaluated using paired t-tests. Relationships between FRI parameters/mucus plugging scores and conventional lung function measurements at baseline will be assessed with linear regression analyses for associations between outcomes, scatterplots to visualise the relationship, and correlation coefficients (Spearman’s rank and Pearson’s) to quantify the strength of these associations. Conclusions: The BURAN study will represent one of the first applications of FRI—a novel, non-invasive, highly sensitive method of assessing lung structure, function and health—in the field of biologic respiratory therapies. Findings from this study will increase understanding of cellular-level eosinophil depletion mechanisms and improvements in lung function and asthma control following benralizumab treatment.
KW - Eosinophilic asthma
KW - Functional respiratory imaging
KW - Lung structure/function
KW - Mucus plugging
KW - Obstructive airway disease
KW - Respiratory disease
KW - T2 inflammation
UR - http://www.scopus.com/inward/record.url?scp=85158033481&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85158033481&partnerID=8YFLogxK
U2 - 10.1186/s12931-023-02415-4
DO - 10.1186/s12931-023-02415-4
M3 - Article
C2 - 37131265
AN - SCOPUS:85158033481
SN - 1465-9921
VL - 24
JO - Respiratory Research
JF - Respiratory Research
IS - 1
M1 - 121
ER -