The extracellular matrix molecule tenascin-R and its HNK-1 carbohydrate modulate perisomatic inhibition and long-term potentiation in the CA1 region of the hippocampus

A. K. Saghatelyan, S. Gorissen, M. Albert, B. Hertlein, M. Schachner, A. Dityatev

Research output: Contribution to journalArticlepeer-review

97 Scopus citations

Abstract

Perisomatic inhibition of pyramidal cells regulates efferent signalling from the hippocampus. The striking presence of HNK-1, a carbohydrate expressed by neural adhesion molecules, on perisomatic interneurons and around somata of CA1 pyramidal neurons led us to apply monoclonal HNK-1 antibodies to acute murine hippocampal slices. Injection of these antibodies decreased GABA(A) receptor-mediated perisomatic inhibitory postsynaptic currents (pIPSCs) but did not affect dendritic IPSCs or excitatory postsynaptic currents. The decrease in the mean amplitude of evoked pIPSCs by HNK-1 antibodies was accompanied by an increase in the coefficient of variation of pIPSC amplitude, number of failures and changes in frequency but not amplitude of miniature IPSCs, suggesting that HNK-1 antibodies reduced efficacy of evoked GABA release. HNK-1 antibodies did not affect pIPSCs in knock-out mice deficient in the extracellular matrix molecule tenascin-R which carries the HNK-1 carbohydrate as analysed by immunoblotting in synaptosomal fractions prepared from the CA1 region of the hippocampus. For control, HNK-1 antibody was applied to acute sections of mice deficient in the neural cell adhesion molecule NCAM, another potential carrier of HNK-1, and resulted in decrease of pIPSCs as observed in wild-type mice. Reduction in perisomatic inhibition is expected to promote induction of long-term potentiation (LTP) by increasing the level of depolarization during theta-burst stimulation. Indeed, LTP was increased by HNK-1 antibody applied before stimulation. Moreover, LTP was reduced by an HNK-1 peptide mimic, but not control peptide. These results provide first evidence that tenascin-R and its associated HNK-1 carbohydrate modulate perisomatic inhibition and synaptic plasticity in the hippocampus.

Original languageEnglish (US)
Pages (from-to)3331-3342
Number of pages12
JournalEuropean Journal of Neuroscience
Volume12
Issue number9
DOIs
StatePublished - Jan 1 2000
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Keywords

  • GABA(A) receptors
  • HNK-1 carbohydrate
  • LTP
  • Perisomatic inhibition
  • Synaptic transmission
  • Tenascin-R

Fingerprint Dive into the research topics of 'The extracellular matrix molecule tenascin-R and its HNK-1 carbohydrate modulate perisomatic inhibition and long-term potentiation in the CA1 region of the hippocampus'. Together they form a unique fingerprint.

Cite this