The function of color and structure based on eeg features in landscape recognition

Yuting Wang, Shujian Wang, Ming Xu

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Both color and structure make important contributions to human visual perception, as well as the evaluation of landscape quality and landscape aesthetics. The EEG equipment liveamp32 was used to record the EEG signals of humans when viewing landscape images, structure images with filtered color, and color images with a filtered structure. The results show that the SVM classifier was the most suitable classifier for landscape classification based on EEG features. The classification accuracy of the landscape picture recognition was up to 98.3% when using beta waves, while the accuracy of the color recognition was 97.5%, and that of the structure recognition was 93.9% when using gamma waves. Secondly, color and structure played a major role in determining the alpha and gamma wave responses, respectively, for all the landscape types, including forest, desert, and water. Furthermore, structure only played a decisive role in forest, while color played a major role in desert and water when using beta waves. Lastly, statistically significant differences between landscape groups and scenario groups with regard to alpha, beta, and gamma rhythms in brain waves were confirmed. The reasonable usage and layout of structure and color will have a very important guiding value for landscape aesthetics in future landscape design and landscape planning.

Original languageEnglish (US)
Article number4866
JournalInternational journal of environmental research and public health
Issue number9
StatePublished - May 1 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis


  • Color
  • Electroencephalography (EEG)
  • Landscape recognition
  • Structure


Dive into the research topics of 'The function of color and structure based on eeg features in landscape recognition'. Together they form a unique fingerprint.

Cite this