The long-term fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface

An X-ray absorption spectroscopy study

Evert Elzinga, Ashaki Rouff, Richard J. Reeder

Research output: Contribution to journalArticle

73 Citations (Scopus)

Abstract

In this study, the speciation of Zn2+, Pb2+, and Cu2+ ions sorbed at the calcite surface was monitored during a 2.5-year reaction period, using extended X-ray absorption spectroscopy to characterize metal speciation on the molecular scale. Experiments were performed using pre-equilibrated calcite-water suspensions of pH 8.3, at metal concentrations below the solubility of metal hydroxide and carbonate precipitates, and at constant metal surface loadings. The EXAFS results indicate that all three metals remained coordinated at the calcite surface as inner-sphere adsorption complexes during the 2.5-year ageing period, with no evidence to suggest slow formation of dilute metal-calcite solid solutions under the reaction conditions employed. All three divalent metals were found to form non-octahedral complexes upon coordination to the calcite surface, with Zn2+ adsorbing as a tetrahedral complex, Cu2+ as a Jahn-Teller distorted octahedral complex, and Pb2+ coordinating as a trigonal- or square-pyramidal surface complex. The non-octahedral configurations of these surface complexes may have hindered metal transfer from the calcite surface into the bulk, where Ca2+ is in octahedral coordination with respect to first-shell O. The use of pre-equilibrated calcite suspensions, with no net calcite dissolution or precipitation, likely prevented metal incorporation into the lattice as a result of surface recrystallization. The results from this study imply that ageing alone does not increase the stability of Zn2+, Pb2+, and Cu2+ partitioning to calcite if equilibrium with the solution is maintained during reaction; under these conditions, these metals are likely to remain available for exchange even after extended sorption times.

Original languageEnglish (US)
Pages (from-to)2715-2725
Number of pages11
JournalGeochimica et Cosmochimica Acta
Volume70
Issue number11
DOIs
StatePublished - Jun 1 2006
Externally publishedYes

Fingerprint

X ray absorption spectroscopy
Calcium Carbonate
atomic absorption spectroscopy
X-ray spectroscopy
calcite
Metals
adsorption
Adsorption
metal
Suspensions
Aging of materials
Carbonates
solid solution
hydroxide
Sorption
Precipitates
Solid solutions
Dissolution
solubility
partitioning

All Science Journal Classification (ASJC) codes

  • Geochemistry and Petrology

Cite this

@article{6520cb15b91a48daa91d0d8824767d8a,
title = "The long-term fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface: An X-ray absorption spectroscopy study",
abstract = "In this study, the speciation of Zn2+, Pb2+, and Cu2+ ions sorbed at the calcite surface was monitored during a 2.5-year reaction period, using extended X-ray absorption spectroscopy to characterize metal speciation on the molecular scale. Experiments were performed using pre-equilibrated calcite-water suspensions of pH 8.3, at metal concentrations below the solubility of metal hydroxide and carbonate precipitates, and at constant metal surface loadings. The EXAFS results indicate that all three metals remained coordinated at the calcite surface as inner-sphere adsorption complexes during the 2.5-year ageing period, with no evidence to suggest slow formation of dilute metal-calcite solid solutions under the reaction conditions employed. All three divalent metals were found to form non-octahedral complexes upon coordination to the calcite surface, with Zn2+ adsorbing as a tetrahedral complex, Cu2+ as a Jahn-Teller distorted octahedral complex, and Pb2+ coordinating as a trigonal- or square-pyramidal surface complex. The non-octahedral configurations of these surface complexes may have hindered metal transfer from the calcite surface into the bulk, where Ca2+ is in octahedral coordination with respect to first-shell O. The use of pre-equilibrated calcite suspensions, with no net calcite dissolution or precipitation, likely prevented metal incorporation into the lattice as a result of surface recrystallization. The results from this study imply that ageing alone does not increase the stability of Zn2+, Pb2+, and Cu2+ partitioning to calcite if equilibrium with the solution is maintained during reaction; under these conditions, these metals are likely to remain available for exchange even after extended sorption times.",
author = "Evert Elzinga and Ashaki Rouff and Reeder, {Richard J.}",
year = "2006",
month = "6",
day = "1",
doi = "10.1016/j.gca.2006.02.026",
language = "English (US)",
volume = "70",
pages = "2715--2725",
journal = "Geochmica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",
number = "11",

}

TY - JOUR

T1 - The long-term fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface

T2 - An X-ray absorption spectroscopy study

AU - Elzinga, Evert

AU - Rouff, Ashaki

AU - Reeder, Richard J.

PY - 2006/6/1

Y1 - 2006/6/1

N2 - In this study, the speciation of Zn2+, Pb2+, and Cu2+ ions sorbed at the calcite surface was monitored during a 2.5-year reaction period, using extended X-ray absorption spectroscopy to characterize metal speciation on the molecular scale. Experiments were performed using pre-equilibrated calcite-water suspensions of pH 8.3, at metal concentrations below the solubility of metal hydroxide and carbonate precipitates, and at constant metal surface loadings. The EXAFS results indicate that all three metals remained coordinated at the calcite surface as inner-sphere adsorption complexes during the 2.5-year ageing period, with no evidence to suggest slow formation of dilute metal-calcite solid solutions under the reaction conditions employed. All three divalent metals were found to form non-octahedral complexes upon coordination to the calcite surface, with Zn2+ adsorbing as a tetrahedral complex, Cu2+ as a Jahn-Teller distorted octahedral complex, and Pb2+ coordinating as a trigonal- or square-pyramidal surface complex. The non-octahedral configurations of these surface complexes may have hindered metal transfer from the calcite surface into the bulk, where Ca2+ is in octahedral coordination with respect to first-shell O. The use of pre-equilibrated calcite suspensions, with no net calcite dissolution or precipitation, likely prevented metal incorporation into the lattice as a result of surface recrystallization. The results from this study imply that ageing alone does not increase the stability of Zn2+, Pb2+, and Cu2+ partitioning to calcite if equilibrium with the solution is maintained during reaction; under these conditions, these metals are likely to remain available for exchange even after extended sorption times.

AB - In this study, the speciation of Zn2+, Pb2+, and Cu2+ ions sorbed at the calcite surface was monitored during a 2.5-year reaction period, using extended X-ray absorption spectroscopy to characterize metal speciation on the molecular scale. Experiments were performed using pre-equilibrated calcite-water suspensions of pH 8.3, at metal concentrations below the solubility of metal hydroxide and carbonate precipitates, and at constant metal surface loadings. The EXAFS results indicate that all three metals remained coordinated at the calcite surface as inner-sphere adsorption complexes during the 2.5-year ageing period, with no evidence to suggest slow formation of dilute metal-calcite solid solutions under the reaction conditions employed. All three divalent metals were found to form non-octahedral complexes upon coordination to the calcite surface, with Zn2+ adsorbing as a tetrahedral complex, Cu2+ as a Jahn-Teller distorted octahedral complex, and Pb2+ coordinating as a trigonal- or square-pyramidal surface complex. The non-octahedral configurations of these surface complexes may have hindered metal transfer from the calcite surface into the bulk, where Ca2+ is in octahedral coordination with respect to first-shell O. The use of pre-equilibrated calcite suspensions, with no net calcite dissolution or precipitation, likely prevented metal incorporation into the lattice as a result of surface recrystallization. The results from this study imply that ageing alone does not increase the stability of Zn2+, Pb2+, and Cu2+ partitioning to calcite if equilibrium with the solution is maintained during reaction; under these conditions, these metals are likely to remain available for exchange even after extended sorption times.

UR - http://www.scopus.com/inward/record.url?scp=33646436998&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646436998&partnerID=8YFLogxK

U2 - 10.1016/j.gca.2006.02.026

DO - 10.1016/j.gca.2006.02.026

M3 - Article

VL - 70

SP - 2715

EP - 2725

JO - Geochmica et Cosmochimica Acta

JF - Geochmica et Cosmochimica Acta

SN - 0016-7037

IS - 11

ER -