The relative utility of foraminifera and diatoms for reconstructing late Holocene sea-level change in North Carolina, USA

Andrew C. Kemp, Benjamin Horton, D. Reide Corbett, Stephen J. Culver, Robin J. Edwards, Orson van de Plassche

Research output: Contribution to journalArticle

44 Scopus citations

Abstract

Foraminifera and diatoms preserved in salt-marsh sediments have been used to produce high-resolution records of Holocene relative sea-level (RSL) change. To determine which of these microfossil groups is most appropriate for this purpose we investigated their relative utility from salt marshes in North Carolina, USA. Regional-scale transfer functions were developed using foraminifera, diatoms and a combination of both (multi-proxy) from three salt marshes (Oregon Inlet, Currituck Barrier Island and Pea Island). We evaluated each approach on the basis of transfer-function performance. Foraminifera, diatoms and multi-proxy-based transfer functions all demonstrated a strong relationship between observed and predicted elevations (r2jack > 0.74 and RMSEP < 0.05 m), suggesting that they have equal utility. Application of the transfer functions to a fossil core from Salvo to reconstruct former sea levels enabled us to consider relative utility in light of 'paleo-performance'. Fossil foraminifera had strong modern analogues, whilst diatoms had poor modern analogues making them unreliable. This result reflects the high diversity and site-specific distribution of modern diatoms. Consequently, we used foraminifera to reconstruct RSL change for the period since ∼ AD 1800 using a 210Pb- and 14C-based chronology, and we were able to reconcile this with tide-gauge records.

Original languageEnglish (US)
Pages (from-to)9-21
Number of pages13
JournalQuaternary Research
Volume71
Issue number1
DOIs
StatePublished - Jan 1 2009

All Science Journal Classification (ASJC) codes

  • Arts and Humanities (miscellaneous)
  • Earth-Surface Processes
  • Earth and Planetary Sciences(all)

Keywords

  • Diatoms
  • Foraminifera
  • North Carolina
  • Sea level
  • Transfer function

Fingerprint Dive into the research topics of 'The relative utility of foraminifera and diatoms for reconstructing late Holocene sea-level change in North Carolina, USA'. Together they form a unique fingerprint.

  • Cite this