Abstract
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
Original language | English (US) |
---|---|
Article number | 056 |
Journal | Journal of Cosmology and Astroparticle Physics |
Volume | 2019 |
Issue number | 2 |
DOIs | |
State | Published - Feb 27 2019 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
Keywords
- CMBR experiments
- CMBR polarisation
- Cosmological parameters from CMBR
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'The Simons Observatory: Science goals and forecasts'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Journal of Cosmology and Astroparticle Physics, Vol. 2019, No. 2, 056, 27.02.2019.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - The Simons Observatory
T2 - Science goals and forecasts
AU - Ade, Peter
AU - Aguirre, James
AU - Ahmed, Zeeshan
AU - Aiola, Simone
AU - Ali, Aamir
AU - Alonso, David
AU - Alvarez, Marcelo A.
AU - Arnold, Kam
AU - Ashton, Peter
AU - Austermann, Jason
AU - Awan, Humna
AU - Baccigalupi, Carlo
AU - Baildon, Taylor
AU - Barron, Darcy
AU - Battaglia, Nick
AU - Battye, Richard
AU - Baxter, Eric
AU - Bazarko, Andrew
AU - Beall, James A.
AU - Bean, Rachel
AU - Beck, Dominic
AU - Beckman, Shawn
AU - Beringue, Benjamin
AU - Bianchini, Federico
AU - Boada, Steven
AU - Boettger, David
AU - Bond, J. Richard
AU - Borrill, Julian
AU - Brown, Michael L.
AU - Bruno, Sarah Marie
AU - Bryan, Sean
AU - Calabrese, Erminia
AU - Calafut, Victoria
AU - Calisse, Paolo
AU - Carron, Julien
AU - Challinor, Anthony
AU - Chesmore, Grace
AU - Chinone, Yuji
AU - Chluba, Jens
AU - Cho, Hsiao Mei Sherry
AU - Choi, Steve
AU - Coppi, Gabriele
AU - Cothard, Nicholas F.
AU - Coughlin, Kevin
AU - Crichton, Devin
AU - Crowley, Kevin D.
AU - Crowley, Kevin T.
AU - Cukierman, Ari
AU - D'Ewart, John M.
AU - Dünner, Rolando
AU - De Haan, Tijmen
AU - Devlin, Mark
AU - Dicker, Simon
AU - Didier, Joy
AU - Dobbs, Matt
AU - Dober, Bradley
AU - Duell, Cody J.
AU - Duff, Shannon
AU - Duivenvoorden, Adri
AU - Dunkley, Jo
AU - Dusatko, John
AU - Errard, Josquin
AU - Fabbian, Giulio
AU - Feeney, Stephen
AU - Ferraro, Simone
AU - Fluxà, Pedro
AU - Freese, Katherine
AU - Frisch, Josef C.
AU - Frolov, Andrei
AU - Fuller, George
AU - Fuzia, Brittany
AU - Galitzki, Nicholas
AU - Gallardo, Patricio A.
AU - Ghersi, Jose Tomas Galvez
AU - Gao, Jiansong
AU - Gawiser, Eric
AU - Gerbino, Martina
AU - Gluscevic, Vera
AU - Goeckner-Wald, Neil
AU - Golec, Joseph
AU - Gordon, Sam
AU - Gralla, Megan
AU - Green, Daniel
AU - Grigorian, Arpi
AU - Groh, John
AU - Groppi, Chris
AU - Guan, Yilun
AU - Gudmundsson, Jon E.
AU - Han, Dongwon
AU - Hargrave, Peter
AU - Hasegawa, Masaya
AU - Hasselfield, Matthew
AU - Hattori, Makoto
AU - Haynes, Victor
AU - Hazumi, Masashi
AU - He, Yizhou
AU - Healy, Erin
AU - Henderson, Shawn W.
AU - Hervias-Caimapo, Carlos
AU - Hill, Charles A.
AU - Hill, J. Colin
AU - Hilton, Gene
AU - Hilton, Matt
AU - Hincks, Adam D.
AU - Hinshaw, Gary
AU - Hložek, Renée
AU - Ho, Shirley
AU - Ho, Shuay Pwu Patty
AU - Howe, Logan
AU - Huang, Zhiqi
AU - Hubmayr, Johannes
AU - Huffenberger, Kevin
AU - Hughes, John P.
AU - Ijjas, Anna
AU - Ikape, Margaret
AU - Irwin, Kent
AU - Jaffe, Andrew H.
AU - Jain, Bhuvnesh
AU - Jeong, Oliver
AU - Kaneko, Daisuke
AU - Karpel, Ethan D.
AU - Katayama, Nobuhiko
AU - Keating, Brian
AU - Kernasovskiy, Sarah S.
AU - Keskitalo, Reijo
AU - Kisner, Theodore
AU - Kiuchi, Kenji
AU - Klein, Jeff
AU - Knowles, Kenda
AU - Koopman, Brian
AU - Kosowsky, Arthur
AU - Krachmalnicoff, Nicoletta
AU - Kuenstner, Stephen E.
AU - Kuo, Chao Lin
AU - Kusaka, Akito
AU - Lashner, Jacob
AU - Lee, Adrian
AU - Lee, Eunseong
AU - Leon, David
AU - Leung, Jason S.Y.
AU - Lewis, Antony
AU - Li, Yaqiong
AU - Li, Zack
AU - Limon, Michele
AU - Linder, Eric
AU - Lopez-Caraballo, Carlos
AU - Louis, Thibaut
AU - Lowry, Lindsay
AU - Lungu, Marius
AU - Madhavacheril, Mathew
AU - Mak, Daisy
AU - Maldonado, Felipe
AU - Mani, Hamdi
AU - Mates, Ben
AU - Matsuda, Frederick
AU - Maurin, Loïc
AU - Mauskopf, Phil
AU - May, Andrew
AU - McCallum, Nialh
AU - McKenney, Chris
AU - McMahon, Jeff
AU - Meerburg, P. Daniel
AU - Meyers, Joel
AU - Miller, Amber
AU - Mirmelstein, Mark
AU - Moodley, Kavilan
AU - Munchmeyer, Moritz
AU - Munson, Charles
AU - Naess, Sigurd
AU - Nati, Federico
AU - Navaroli, Martin
AU - Newburgh, Laura
AU - Nguyen, Ho Nam
AU - Niemack, Michael
AU - Nishino, Haruki
AU - Orlowski-Scherer, John
AU - Page, Lyman
AU - Partridge, Bruce
AU - Peloton, Julien
AU - Perrotta, Francesca
AU - Piccirillo, Lucio
AU - Pisano, Giampaolo
AU - Poletti, Davide
AU - Puddu, Roberto
AU - Puglisi, Giuseppe
AU - Raum, Chris
AU - Reichardt, Christian L.
AU - Remazeilles, Mathieu
AU - Rephaeli, Yoel
AU - Riechers, Dominik
AU - Rojas, Felipe
AU - Roy, Anirban
AU - Sadeh, Sharon
AU - Sakurai, Yuki
AU - Salatino, Maria
AU - Rao, Mayuri Sathyanarayana
AU - Schaan, Emmanuel
AU - Schmittfull, Marcel
AU - Sehgal, Neelima
AU - Seibert, Joseph
AU - Seljak, Uros
AU - Sherwin, Blake
AU - Shimon, Meir
AU - Sierra, Carlos
AU - Sievers, Jonathan
AU - Sikhosana, Precious
AU - Silva-Feaver, Maximiliano
AU - Simon, Sara M.
AU - Sinclair, Adrian
AU - Siritanasak, Praween
AU - Smith, Kendrick
AU - Smith, Stephen R.
AU - Spergel, David
AU - Staggs, Suzanne T.
AU - Stein, George
AU - Stevens, Jason R.
AU - Stompor, Radek
AU - Suzuki, Aritoki
AU - Tajima, Osamu
AU - Takakura, Satoru
AU - Teply, Grant
AU - Thomas, Daniel B.
AU - Thorne, Ben
AU - Thornton, Robert
AU - Trac, Hy
AU - Tsai, Calvin
AU - Tucker, Carole
AU - Ullom, Joel
AU - Vagnozzi, Sunny
AU - Engelen, Alexander Van
AU - Lanen, Jeff Van
AU - Winkle, Daniel D.Van
AU - Vavagiakis, Eve M.
AU - Vergès, Clara
AU - Vissers, Michael
AU - Wagoner, Kasey
AU - Walker, Samantha
AU - Ward, Jon
AU - Westbrook, Ben
AU - Whitehorn, Nathan
AU - Williams, Jason
AU - Williams, Joel
AU - Wollack, Edward J.
AU - Xu, Zhilei
AU - Yu, Byeonghee
AU - Yu, Cyndia
AU - Zago, Fernando
AU - Zhang, Hezi
AU - Zhu, Ningfeng
N1 - Funding Information: This work was supported in part by a grant from the Simons Foundation (Award #457687, B.K.). DA aknowledges support from the Beecroft trust and from STFC through an Ernest Rutherford Fellowship, grant reference ST/P004474/1. CB, NK, FP, DP acknowledge support from the COSMOS Network (www.cosmosnet.it) from the Italian Space Agency (ASI), from the RADIOFOREGROUNDS project, funded by the European Commission's H2020 Research Infrastructures under the Grant Agreement 687312, and from the INDARK initiative from the Italian Institute for Nuclear Physics (INFN). DB thanks support from grant ALMA-CONICYT 31140004. EC is supported by a STFC Ernest Rutherford Fellowship ST/M004856/2. AC acknowledges support from the UK Science and Technology Facilities Council (grant number ST/N000927/1). JC is supported by the Royal Society as a Royal Society University Research Fellow at the University of Manchester, UK. DC acknowledges the-nancial assistance of the South African SKA Project (SKA SA). Canadian co-authors acknowledge support from the Natural Sciences and Engineering Research Council of Canada. JE and RSt acknowledge support from French National Research Agency (ANR) through project BxB no. ANR-17-CE31-0022. GF acknowledges the support of the CNES postdoctoral fellowship. AD, KF, MG, JEG, and SV acknowledge support by the Vetenskapsradet (Swedish Research Council) through contract No. 638-2013-8993 and the Oskar Klein Centre for Cosmoparticle Physics at Stockholm University. Further we acknowledge support from DoE grant DE-SC007859 and the LCTP at the University of Michigan. VG gratefully acknowledges the support of the Eric Schmidt Fellowship at the Institute for Advanced Study. JCH is supported by the Friends of the Institute for Advanced Study. MHi acknowledges support from the NRF and SKA-SA. The Dunlap Institute is funded through an endowment established by the David Dunlap family and the University of Toronto. The authors at the University of Toronto acknowledge that the land on which the University of Toronto is built is the traditional territory of the Haudenosaunee, and most recently, the territory of the Mississaugas of the New Credit First Nation. They are grateful to have the opportunity to work in the community, on this territory. KH acknowledges support from NASA grant ATP-NNX17AF87G. We acknowledge support from the JSPS KAKENHI Grant Number JP16K21744, JP17H06134, and JP17K14272. AK and KK acknowledges the support by JSPS Leading Initiative for Excellent Young Researchers (LEADER). CL, RP and RD thanks CONICYT for grants Anillo ACT-1417 and QUIMAL-160009. NK acknowledges that this work was supported by MEXT KAKENHI Grant Numbers JP17H01125, JSPS Core-to-Core Program and World Premier International Research Center Initiative (WPI), MEXT, Japan. AL, JC, JP and MM acknowledge support from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. [616170]. FM acknowledges the support of the JSPS fellowship (Grant number JP17F17025). LM thanks support from CONICYT, FONDECYT 3170846. PDM acknowledges support from the Senior Kavli Institute Fellowships at the University of Cambridge and from the Netherlands organization for scienti-c research (NWO) VIDI grant (dossier 639.042.730). MDN acknowledges support from NSF grants AST-1454881 and AST-1517049. FB and CR acknowledge support from the Australian Research Council through FT150100074 and the University of Melbourne. MR was supported by the ERC Consolidator Grant CMBSPEC (No. 725456). MS acknowledges support from the Je-Bezos Fellowship at the Institute for Advanced Study. NS acknowledges support from NSF grant number 1513618. BDS acknowledges support from an Isaac Newton Trust Early Career Grant and an STFC Ernest Rutherford Fellowship. ST acknowledges the support of the JSPS fellowship (Grant number JP18J02133). In Japan, this work was supported by JSPS KAKENHI Grant Number JP17H06134. BT acknowledges the support of an STFC studentship. AvE was supported by the Beatrice and Vincent Tremaine Fellowship at CITA. Some of the results in this paper have been derived using the HEALPix [124] package. We thank members of the CMB-S4 collaboration for useful discussions and interactions that have helped inform the SO design. Publisher Copyright: © 2019 IOP Publishing Ltd and Sissa Medialab.
PY - 2019/2/27
Y1 - 2019/2/27
N2 - The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
AB - The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
KW - CMBR experiments
KW - CMBR polarisation
KW - Cosmological parameters from CMBR
UR - http://www.scopus.com/inward/record.url?scp=85062290420&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062290420&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2019/02/056
DO - 10.1088/1475-7516/2019/02/056
M3 - Article
AN - SCOPUS:85062290420
SN - 1475-7516
VL - 2019
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
IS - 2
M1 - 056
ER -