The Sorghum bicolor genome and the diversification of grasses

Andrew H. Paterson, John E. Bowers, Rémy Bruggmann, Inna Dubchak, Jane Grimwood, Heidrun Gundlach, Georg Haberer, Uffe Hellsten, Therese Mitros, Alexander Poliakov, Jeremy Schmutz, Manuel Spannagl, Haibao Tang, Xiyin Wang, Thomas Wicker, Arvind K. Bharti, Jarrod Chapman, F. Alex Feltus, Udo Gowik, Igor V. GrigorievEric Lyons, Christopher A. Maher, Mihaela Martis, Apurva Narechania, Robert P. Otillar, Bryan W. Penning, Asaf A. Salamov, Yu Wang, Lifang Zhang, Nicholas C. Carpita, Michael Freeling, Alan R. Gingle, C. Thomas Hash, Beat Keller, Patricia Klein, Stephen Kresovich, Maureen C. McCann, Ray Ming, Daniel G. Peterson, Mehboob-Ur-Rahman, Doreen Ware, Peter Westhoff, Klaus F.X. Mayer, Joachim Messing, Daniel S. Rokhsar

Research output: Contribution to journalArticle

1700 Citations (Scopus)

Abstract

Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the ∼730-megabase Sorghum bicolor (L.) Moench genome, placing ∼98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the ∼75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization ∼70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.

Original languageEnglish (US)
Pages (from-to)551-556
Number of pages6
JournalNature
Volume457
Issue number7229
DOIs
StatePublished - Jan 29 2009

Fingerprint

Sorghum
Poaceae
Genome
Genes
Genome Size
Retroelements
Canes
Gene Duplication
Gene Order
Heterochromatin
Droughts
Firearms
MicroRNAs
Genetic Recombination
Zea mays
Food
DNA
Oryza

All Science Journal Classification (ASJC) codes

  • General

Cite this

Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., ... Rokhsar, D. S. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature, 457(7229), 551-556. https://doi.org/10.1038/nature07723
Paterson, Andrew H. ; Bowers, John E. ; Bruggmann, Rémy ; Dubchak, Inna ; Grimwood, Jane ; Gundlach, Heidrun ; Haberer, Georg ; Hellsten, Uffe ; Mitros, Therese ; Poliakov, Alexander ; Schmutz, Jeremy ; Spannagl, Manuel ; Tang, Haibao ; Wang, Xiyin ; Wicker, Thomas ; Bharti, Arvind K. ; Chapman, Jarrod ; Feltus, F. Alex ; Gowik, Udo ; Grigoriev, Igor V. ; Lyons, Eric ; Maher, Christopher A. ; Martis, Mihaela ; Narechania, Apurva ; Otillar, Robert P. ; Penning, Bryan W. ; Salamov, Asaf A. ; Wang, Yu ; Zhang, Lifang ; Carpita, Nicholas C. ; Freeling, Michael ; Gingle, Alan R. ; Hash, C. Thomas ; Keller, Beat ; Klein, Patricia ; Kresovich, Stephen ; McCann, Maureen C. ; Ming, Ray ; Peterson, Daniel G. ; Mehboob-Ur-Rahman ; Ware, Doreen ; Westhoff, Peter ; Mayer, Klaus F.X. ; Messing, Joachim ; Rokhsar, Daniel S. / The Sorghum bicolor genome and the diversification of grasses. In: Nature. 2009 ; Vol. 457, No. 7229. pp. 551-556.
@article{e02891ef2be645748e1816baeb8b7bbd,
title = "The Sorghum bicolor genome and the diversification of grasses",
abstract = "Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the ∼730-megabase Sorghum bicolor (L.) Moench genome, placing ∼98{\%} of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the ∼75{\%} larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization ∼70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24{\%} of genes are grass-specific and 7{\%} are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.",
author = "Paterson, {Andrew H.} and Bowers, {John E.} and R{\'e}my Bruggmann and Inna Dubchak and Jane Grimwood and Heidrun Gundlach and Georg Haberer and Uffe Hellsten and Therese Mitros and Alexander Poliakov and Jeremy Schmutz and Manuel Spannagl and Haibao Tang and Xiyin Wang and Thomas Wicker and Bharti, {Arvind K.} and Jarrod Chapman and Feltus, {F. Alex} and Udo Gowik and Grigoriev, {Igor V.} and Eric Lyons and Maher, {Christopher A.} and Mihaela Martis and Apurva Narechania and Otillar, {Robert P.} and Penning, {Bryan W.} and Salamov, {Asaf A.} and Yu Wang and Lifang Zhang and Carpita, {Nicholas C.} and Michael Freeling and Gingle, {Alan R.} and Hash, {C. Thomas} and Beat Keller and Patricia Klein and Stephen Kresovich and McCann, {Maureen C.} and Ray Ming and Peterson, {Daniel G.} and Mehboob-Ur-Rahman and Doreen Ware and Peter Westhoff and Mayer, {Klaus F.X.} and Joachim Messing and Rokhsar, {Daniel S.}",
year = "2009",
month = "1",
day = "29",
doi = "10.1038/nature07723",
language = "English (US)",
volume = "457",
pages = "551--556",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7229",

}

Paterson, AH, Bowers, JE, Bruggmann, R, Dubchak, I, Grimwood, J, Gundlach, H, Haberer, G, Hellsten, U, Mitros, T, Poliakov, A, Schmutz, J, Spannagl, M, Tang, H, Wang, X, Wicker, T, Bharti, AK, Chapman, J, Feltus, FA, Gowik, U, Grigoriev, IV, Lyons, E, Maher, CA, Martis, M, Narechania, A, Otillar, RP, Penning, BW, Salamov, AA, Wang, Y, Zhang, L, Carpita, NC, Freeling, M, Gingle, AR, Hash, CT, Keller, B, Klein, P, Kresovich, S, McCann, MC, Ming, R, Peterson, DG, Mehboob-Ur-Rahman, Ware, D, Westhoff, P, Mayer, KFX, Messing, J & Rokhsar, DS 2009, 'The Sorghum bicolor genome and the diversification of grasses', Nature, vol. 457, no. 7229, pp. 551-556. https://doi.org/10.1038/nature07723

The Sorghum bicolor genome and the diversification of grasses. / Paterson, Andrew H.; Bowers, John E.; Bruggmann, Rémy; Dubchak, Inna; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hellsten, Uffe; Mitros, Therese; Poliakov, Alexander; Schmutz, Jeremy; Spannagl, Manuel; Tang, Haibao; Wang, Xiyin; Wicker, Thomas; Bharti, Arvind K.; Chapman, Jarrod; Feltus, F. Alex; Gowik, Udo; Grigoriev, Igor V.; Lyons, Eric; Maher, Christopher A.; Martis, Mihaela; Narechania, Apurva; Otillar, Robert P.; Penning, Bryan W.; Salamov, Asaf A.; Wang, Yu; Zhang, Lifang; Carpita, Nicholas C.; Freeling, Michael; Gingle, Alan R.; Hash, C. Thomas; Keller, Beat; Klein, Patricia; Kresovich, Stephen; McCann, Maureen C.; Ming, Ray; Peterson, Daniel G.; Mehboob-Ur-Rahman; Ware, Doreen; Westhoff, Peter; Mayer, Klaus F.X.; Messing, Joachim; Rokhsar, Daniel S.

In: Nature, Vol. 457, No. 7229, 29.01.2009, p. 551-556.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The Sorghum bicolor genome and the diversification of grasses

AU - Paterson, Andrew H.

AU - Bowers, John E.

AU - Bruggmann, Rémy

AU - Dubchak, Inna

AU - Grimwood, Jane

AU - Gundlach, Heidrun

AU - Haberer, Georg

AU - Hellsten, Uffe

AU - Mitros, Therese

AU - Poliakov, Alexander

AU - Schmutz, Jeremy

AU - Spannagl, Manuel

AU - Tang, Haibao

AU - Wang, Xiyin

AU - Wicker, Thomas

AU - Bharti, Arvind K.

AU - Chapman, Jarrod

AU - Feltus, F. Alex

AU - Gowik, Udo

AU - Grigoriev, Igor V.

AU - Lyons, Eric

AU - Maher, Christopher A.

AU - Martis, Mihaela

AU - Narechania, Apurva

AU - Otillar, Robert P.

AU - Penning, Bryan W.

AU - Salamov, Asaf A.

AU - Wang, Yu

AU - Zhang, Lifang

AU - Carpita, Nicholas C.

AU - Freeling, Michael

AU - Gingle, Alan R.

AU - Hash, C. Thomas

AU - Keller, Beat

AU - Klein, Patricia

AU - Kresovich, Stephen

AU - McCann, Maureen C.

AU - Ming, Ray

AU - Peterson, Daniel G.

AU - Mehboob-Ur-Rahman,

AU - Ware, Doreen

AU - Westhoff, Peter

AU - Mayer, Klaus F.X.

AU - Messing, Joachim

AU - Rokhsar, Daniel S.

PY - 2009/1/29

Y1 - 2009/1/29

N2 - Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the ∼730-megabase Sorghum bicolor (L.) Moench genome, placing ∼98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the ∼75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization ∼70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.

AB - Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the ∼730-megabase Sorghum bicolor (L.) Moench genome, placing ∼98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the ∼75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization ∼70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.

UR - http://www.scopus.com/inward/record.url?scp=58449137410&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=58449137410&partnerID=8YFLogxK

U2 - 10.1038/nature07723

DO - 10.1038/nature07723

M3 - Article

C2 - 19189423

AN - SCOPUS:58449137410

VL - 457

SP - 551

EP - 556

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7229

ER -

Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009 Jan 29;457(7229):551-556. https://doi.org/10.1038/nature07723