The template specificity of bacteriophage Φ6 RNA polymerase

Jian Qiao, Leonard Mindich

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

BacteriophageΦ6 contains three double-stranded RNA (dsRNA) genomic segments, L, M, and S. The RNA is located inside a core particle composed of multiple copies of a major structural protein, an RNA-dependent RNA polymerase, a hexameric NTPase, and an auxiliary protein. The virion RNA polymerase in the core particle transcribes segmentsMand S in vitro. Segment L is transcribed poorly because its transcript starts with GU instead of GG found on segments S and M. Transcription in vivo is modified by the binding of host protein YajQ to the outside the core particle so that segment L is transcribed well. This mechanism is the determinant of the temporal control of gene expression inΦ6. Mutants ofΦ6 have been isolated that are independent of YajQ for transcription of segment L. The mutations are found in the gene of the viral polymerase or the major capsid protein or both. These mutants are capable of transcribing segment L with the GU start or GA or GC. The same is found to be true when YajQ is added to wild-type particles. Minus-strand synthesis has restrictions that are different from that of plusstrand synthesis, and YajQ or mutations to independence do not modify minus-strand synthesis behavior. Purified polymerase P2 is able to transcribe dsRNA, but transcription behavior of segment L by both wild-type and mutant polymerases is different from that seen in capsid structures. Adding YajQ to purified polymerase does not change its transcription specificity.

Original languageEnglish (US)
Pages (from-to)10190-10194
Number of pages5
JournalJournal of virology
Volume87
Issue number18
DOIs
StatePublished - 2013

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint

Dive into the research topics of 'The template specificity of bacteriophage Φ6 RNA polymerase'. Together they form a unique fingerprint.

Cite this