The Wicking Kinetics of Liquid Droplets into Yarns

Xuemin Chen, Konstantin G. Kornev, Yash K. Kamath, Alexander V. Neimark

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The wicking kinetics of liquid droplets into yarns is studied using a computerized imaging system. A new method is suggested for characterizing the yarn structure by monitoring droplet absorption. The method is based on the comparative analysis of the time needed for droplet disappearance as a function of droplet volume for various yarns. A mathematical model is developed to describe the wicking kinetics. We show that for wetting liquids, the time of droplet absorption T w is a linear function of the initial droplet volume squared V 0 2. For a given liquid-yarn pair, the slope of this relationship provides important information about the yarn properties. The linear relationship between T w and V0 2 is verified by experimental data for a typical spin finish. The model predicts that droplet wicking can occur even if the advancing contact angle θa is slightly greater than 90°. However, for nonwetting liquids, the relationship between T w and V 0 2 is nonlinear, and a criterion for droplet wicking into nonwetted yarns is obtained.

Original languageEnglish (US)
Pages (from-to)862-869
Number of pages8
JournalTextile Research Journal
Volume71
Issue number10
DOIs
StatePublished - Oct 2001
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Chemical Engineering (miscellaneous)
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'The Wicking Kinetics of Liquid Droplets into Yarns'. Together they form a unique fingerprint.

Cite this