Abstract
The wicking kinetics of liquid droplets into yarns is studied using a computerized imaging system. A new method is suggested for characterizing the yarn structure by monitoring droplet absorption. The method is based on the comparative analysis of the time needed for droplet disappearance as a function of droplet volume for various yarns. A mathematical model is developed to describe the wicking kinetics. We show that for wetting liquids, the time of droplet absorption T w is a linear function of the initial droplet volume squared V 0 2. For a given liquid-yarn pair, the slope of this relationship provides important information about the yarn properties. The linear relationship between T w and V0 2 is verified by experimental data for a typical spin finish. The model predicts that droplet wicking can occur even if the advancing contact angle θa is slightly greater than 90°. However, for nonwetting liquids, the relationship between T w and V 0 2 is nonlinear, and a criterion for droplet wicking into nonwetted yarns is obtained.
Original language | English (US) |
---|---|
Pages (from-to) | 862-869 |
Number of pages | 8 |
Journal | Textile Research Journal |
Volume | 71 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2001 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Chemical Engineering (miscellaneous)
- Polymers and Plastics