Thermal transport in the gallium nitride chemical vapor deposition process

Jiandong Meng, Yogesh Jaluria

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

A numerical study has been carried out to characterize the metalorganic chemical vapor deposition (MOCVD) growth of Gallium Nitride (GaN) in a rotating-disk reactor. The major objective of this work is to examine the dependence of the growth rate and thin film uniformity on the primary parameters. First of all, for a rotating-disk system, the governing equations involved are obtained. Then, with the effect of thermal buoyancy included and based on the detailed mathematical model and chemical reaction mechanisms, the 3D simulation study is conducted for a rotating reactor. A comparison between the predicted growth rate and experimental data is presented. In addition, the effect of various primary operating and design parameters on the growth rate of GaN and thin-film uniformity is also examined. This provides further insight into the reactor performance and the characteristics of the entire process. The results obtained can also form the basis for the future design and optimization of this system.

Original languageEnglish (US)
Title of host publicationASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
DOIs
StatePublished - 2013
EventASME 2013 Heat Transfer Summer Conference, HT 2013 Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology - Minneapolis, MN, United States
Duration: Jul 14 2013Jul 19 2013

Publication series

NameASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
Volume3

Other

OtherASME 2013 Heat Transfer Summer Conference, HT 2013 Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
Country/TerritoryUnited States
CityMinneapolis, MN
Period7/14/137/19/13

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Thermal transport in the gallium nitride chemical vapor deposition process'. Together they form a unique fingerprint.

Cite this