Time asymptotics of the schrödinger wave function in time-periodic potentials

O. Costin, R. D. Costin, J. L. Lebowitz

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

We study the transition to the continuum of an initially bound quantum particle in ℝ Rd, d=1,2,3, subjected, for t≥0, to a time periodic forcing of arbitrary magnitude. The analysis is carried out for compactly supported potentials, satisfying certain auxiliary conditions. It provides complete analytic information on the time Laplace transform of the wave function. From this, comprehensive time asymptotic properties (Borel summable transseries) follow. We obtain in particular a criterion for whether the wave function gets fully delocalized (complete ionization). This criterion shows that complete ionization is generic and provides a convenient test for particular cases. When satisfied it implies absence of discrete spectrum and resonances of the associated Floquet operator. As an illustration we show that the parametric harmonic perturbation of a potential chosen to be any nonzero multiple of the characteristic function of a measurable compact set has this property.

Original languageEnglish (US)
Pages (from-to)283-310
Number of pages28
JournalJournal of Statistical Physics
Volume116
Issue number1-4
DOIs
StatePublished - Aug 2004

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Keywords

  • Borel summability
  • Floquet theory
  • delocalization
  • ionization
  • resonances

Fingerprint

Dive into the research topics of 'Time asymptotics of the schrödinger wave function in time-periodic potentials'. Together they form a unique fingerprint.

Cite this