Timely and Energy-Efficient Multi-Step Update Processing

Vishakha Ramani, Ivan Seskar, Roy D. Yates

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This work explores systems that deliver source updates requiring multiple sequential processing steps. We model and analyze the Age of Information (AoI) performance of various system designs under both parallel and series server setups. In parallel setups, each processor executes all computation steps with multiple processors working in parallel, while in series setups, each processor performs a specific step in sequence. In practice, processing faster is better in terms of age but it also consumes more power. To address this age-power trade-off, we formulate and solve an optimization problem to determine the optimal service rates for each processing step under a given power budget. Our analysis focuses on a special case where updates require two computational steps. The results show that the service rate of the second step should generally be faster than that of the first step to achieve minimum AoI and reduce power wastage. Furthermore, parallel processing is found to offer a better age-power trade-off compared to series processing.

Original languageEnglish (US)
Title of host publicationConference Record of the 58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Pages116-120
Number of pages5
ISBN (Electronic)9798350354058
DOIs
StatePublished - 2024
Externally publishedYes
Event58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024 - Hybrid, Pacific Grove, United States
Duration: Oct 27 2024Oct 30 2024

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (Print)1058-6393

Conference

Conference58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024
Country/TerritoryUnited States
CityHybrid, Pacific Grove
Period10/27/2410/30/24

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Timely and Energy-Efficient Multi-Step Update Processing'. Together they form a unique fingerprint.

Cite this