TY - GEN
T1 - Tracking vehicular speed variations by warping mobile phone signal strengths
AU - Chandrasekaran, Gayathri
AU - Vu, Tam
AU - Varshavsky, Alexander
AU - Gruteser, Marco
AU - Martin, Richard P.
AU - Yang, Jie
AU - Chen, Yingying
PY - 2011
Y1 - 2011
N2 - In this paper, we consider the problem of tracking fine-grained speeds variations of vehicles using signal strength traces from GSM enabled phones. Existing speed estimation techniques using mobile phone signals can provide longer-term speed averages but cannot track short-term speed variations. Understanding short-term speed variations, however, is important in a variety of traffic engineering applications-for example, it may help distinguish slow speeds due to traffic lights from traffic congestion when collecting real time traffic information. Using mobile phones in such applications is particularly attractive because it can be readily obtained from a large number of vehicles. Our approach is founded on the observation that the large-scale path loss and shadow fading components of signal strength readings (signal profile) obtained from the mobile phone on any given road segment appear similar over multiple trips along the same road segment except for distortions along the time axis due to speed variations. We therefore propose a speed tracking technique that uses a Derivative Dynamic Time Warping (DDTW) algorithm to realign a given signal profile with a known training profile from the same road. The speed tracking technique then translates the warping path (i.e., the degree of stretching and compressing needed for alignment) into an estimated speed trace. Using 6.4 hours of GSM signal strength traces collected from a vehicle, we show that our algorithm can estimate vehicular speed with a median error of ± 5mph compared to using a GPS and can capture significant speed variations on road segments with a precision of 68% and a recall of 84%.
AB - In this paper, we consider the problem of tracking fine-grained speeds variations of vehicles using signal strength traces from GSM enabled phones. Existing speed estimation techniques using mobile phone signals can provide longer-term speed averages but cannot track short-term speed variations. Understanding short-term speed variations, however, is important in a variety of traffic engineering applications-for example, it may help distinguish slow speeds due to traffic lights from traffic congestion when collecting real time traffic information. Using mobile phones in such applications is particularly attractive because it can be readily obtained from a large number of vehicles. Our approach is founded on the observation that the large-scale path loss and shadow fading components of signal strength readings (signal profile) obtained from the mobile phone on any given road segment appear similar over multiple trips along the same road segment except for distortions along the time axis due to speed variations. We therefore propose a speed tracking technique that uses a Derivative Dynamic Time Warping (DDTW) algorithm to realign a given signal profile with a known training profile from the same road. The speed tracking technique then translates the warping path (i.e., the degree of stretching and compressing needed for alignment) into an estimated speed trace. Using 6.4 hours of GSM signal strength traces collected from a vehicle, we show that our algorithm can estimate vehicular speed with a median error of ± 5mph compared to using a GPS and can capture significant speed variations on road segments with a precision of 68% and a recall of 84%.
UR - http://www.scopus.com/inward/record.url?scp=79957939876&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79957939876&partnerID=8YFLogxK
U2 - 10.1109/PERCOM.2011.5767589
DO - 10.1109/PERCOM.2011.5767589
M3 - Conference contribution
AN - SCOPUS:79957939876
SN - 9781424495290
T3 - 2011 IEEE International Conference on Pervasive Computing and Communications, PerCom 2011
SP - 213
EP - 221
BT - 2011 IEEE International Conference on Pervasive Computing and Communications, PerCom 2011
T2 - 9th IEEE International Conference on Pervasive Computing and Communications, PerCom 2011
Y2 - 21 March 2011 through 25 March 2011
ER -