TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain

Li Ting Su, Maria A. Agapito, Mingjiang Li, William T.N. Simonson, Anna Huttenlocher, Raymond Habas, Lixia Yue, Loren W. Runnels

Research output: Contribution to journalArticlepeer-review

196 Scopus citations


m-Calpain is a protease implicated in the control of cell adhesion through focal adhesion disassembly. The mechanism by which the enzyme is spatially and temporally controlled is not well understood, particularly because the dependence of calpain on calcium exceeds the submicromolar concentrations normally observed in cells. Here we show that the channel kinase TRPM7 localizes to peripheral adhesion complexes with m-calpain, where it regulates cell adhesion by controlling the activity of the protease. Our research revealed that overexpression of TRPM7 in cells caused cell rounding with a concomitant loss of cell adhesion that is dependent upon the channel of the protein but not its kinase activities. Knockdown of m-calpain blocked TRPM7-induced cell rounding and cell detachment. Silencing of TRPM7 by RNA interference, however, strengthened cell adhesion and increased the number of peripheral adhesion complexes in the cells. Together, our results suggest that the ion channel TRPM7 regulates cell adhesion through m-calpain by mediating the local influx of calcium into peripheral adhesion complexes.

Original languageEnglish (US)
Pages (from-to)11260-11270
Number of pages11
JournalJournal of Biological Chemistry
Issue number16
StatePublished - Apr 21 2006

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain'. Together they form a unique fingerprint.

Cite this