Tuning aryl, hydrazine radical cation electronic interactions using substitutent effects

Guadalupe Valverde-Aguilar, Xianghuai Wang, Edward Plummer, Jenny V. Lockard, Jeffrey I. Zink, Yun Luo, Michael N. Weaver, Stephen F. Nelsen

Research output: Contribution to journalArticle

22 Scopus citations

Abstract

Absorption spectra for 2,3-diaryl-2,3-diazabicyclo[2.2.2]octane radical cations (2(X)̇+) and for their monoaryl analogues 2-tert-butyl-3-aryl-2,3-diazabicyclo[2.2.2]octane radical cations (1(X) ̇+) having para chloro, bromo, iodo, cyano, phenyl, and nitro substituents are reported and compared with those for the previously reported 1- and 2(H)̇+ and 1- and 2(OMe)̇+. The calculated geometries and optical absorption spectra for 2(Cl)̇+ demonstrate that P-C6H4Cl lies between p-C6H 4OMe and C6H5 in its ability to stabilize the lowest energy optical transition of the radical cation, which involves electron donation from the aryl groups toward the π*(NN)+-centered singly occupied molecular orbital of 2(X)̇+. Resonance Raman spectral determination of the reorganization energy for their lowest energy transitions (λvsym) increase in the same order, having values of 1420, 5300, and 6000 cm-1 for X = H, Cl, and OMe, respectively. A neighboring orbital analysis using Koopmans-based calculations of relative orbital energies indicates that the diabatic aryl π-centered molecular orbital that interacts with the dinitrogen π system lies closest in energy to the bonding π(NN)-centered orbital and has an electronic coupling with it of about 9200 ± 600 cm-1, which does not vary regularly with electron donating power of the X substituent.

Original languageEnglish (US)
Pages (from-to)7332-7341
Number of pages10
JournalJournal of Physical Chemistry A
Volume112
Issue number32
DOIs
StatePublished - Aug 14 2008
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Tuning aryl, hydrazine radical cation electronic interactions using substitutent effects'. Together they form a unique fingerprint.

  • Cite this

    Valverde-Aguilar, G., Wang, X., Plummer, E., Lockard, J. V., Zink, J. I., Luo, Y., Weaver, M. N., & Nelsen, S. F. (2008). Tuning aryl, hydrazine radical cation electronic interactions using substitutent effects. Journal of Physical Chemistry A, 112(32), 7332-7341. https://doi.org/10.1021/jp7120005