Abstract
We investigate rapid in-situ synthesis of Cu2ZnSnS4 (CZTS) thin films via Intense Pulsed Light (IPL) irradiation of solution-deposited and mixed binary CuS, ZnS, SnS nanoparticles (NPs) in ambient conditions. The film phase, composition, morphology, electrical properties, optical properties and photocatalytic activity are characterized as a function of the optical fluence. Crystalline pure-phase kesterite CZTS films with high p-type conductivity of 51 S/cm and optical band gap 1.42 eV are synthesized within 15 s. Surprisingly, using supra-optimal IPL fluence (in 19 s) yields films with a composite CZTS-SnO2/SnS2 composition that exhibits about 20% higher photocatalytic efficiency and higher carrier mobility (≈ 120 cm2/Vs) than pure-phase kesterite films. The reaction pathways during IPL irradiation and the resulting film composition are used to understand the enhanced photocatalysis for the supra-optimal fluence. This work will create new avenues for scalable IPL-based bottom-up synthesis of new multinary chalcogenide composites from their binary NPs.
Original language | English (US) |
---|---|
Article number | 110645 |
Journal | Materials Research Bulletin |
Volume | 122 |
DOIs | |
State | Published - Feb 2020 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
Keywords
- Binary nanoparticles
- CuZnSnS
- Intense pulsed light synthesis
- Photocatalyst