Two distinct promoters drive transcription of the human D(1A) dopamine receptor gene

Sang Hyeon Lee, Mari T. Minowa, M. Maral Mouradian

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


The human D(1A) dopamine receptor gene has a GC-rich, TATA-less promoter located upstream of a small, noncoding exon 1, which is separated from the coding exon 2 by a 116-base pair (bp)-long intron. Serial 3'deletions of the 5'-noncoding region of this gene, including the intron and 5'-end of exon 2, resulted in 80 and 40% decrease in transcriptional activity of the upstream promoter in two D(1A)-expressing neuroblastoma cell lines, SK-N-MC and NS20Y, respectively. To investigate the function of this region, the intron and 245 bp at the 5'-end of exon 2 were investigated. Transient expression analyses using various chloramphenicol acetyltransferase constructs showed that the transcriptional activity of the intron is higher than that of the upstream promoter by 12-fold in SK-N-MC cells and by 5.5-fold in NS20Y cells in an orientation-dependent manner, indicating that the D(1A) intron is a strong promoter. Primer extension and ribonuclease protection assays revealed that transcription driven by the intron promoter is initiated at the junction of intron and exon 2 and at a cluster of nucleotides located 50 bp downstream from this junction. The same transcription start sites are utilized by the chloramphenicol acetyltransferase constructs employed in transfections as well as by the D(1A) gene expressed within the human caudate. The relative abundance of D(1A) transcripts originating from the upstream promoter compared with those transcribed from the intron promoter is 1.5-2.9 times in SK-N-MC cells and 2 times in the human caudate. Transcript stability studies in SK-N-MC cells revealed that longer D(1A) mRNA molecules containing exon 1 are degraded 1.8 times faster than shorter transcripts lacking exon 1. Although gel mobility shift assay could not detect DNA-protein interaction at the D(1A) intron, competitive co-transfection using the intron as competitor confirmed the presence of trans-acting factors at the intron. These data taken together indicate that the human D(1A) gene has two functional TATA- less promoters, both in D(1A) expressing cultured neuroblastoma cells and in the human striatum.

Original languageEnglish (US)
Pages (from-to)25292-25299
Number of pages8
JournalJournal of Biological Chemistry
Issue number41
StatePublished - 1996

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Two distinct promoters drive transcription of the human D(1A) dopamine receptor gene'. Together they form a unique fingerprint.

Cite this