TY - JOUR
T1 - Two proteins essential for apolipoprotein B mRNA editing are expressed from a single gene through alternative splicing
AU - Dance, Geoffrey S.C.
AU - Sowden, Mark P.
AU - Cartegni, Luca
AU - Cooper, Ellen
AU - Krainer, Adrian R.
AU - Smith, Harold C.
PY - 2002/4/12
Y1 - 2002/4/12
N2 - Apolipoprotein B (apoB) mRNA editing involves site-specific deamination of cytidine to form uridine, resulting in the production of an in-frame stop codon. Protein translated from edited mRNA is associated with a reduced risk of atherosclerosis, and hence the protein factors that regulate hepatic apoB mRNA editing are of interest. A human protein essential for apoB mRNA editing and an eight-amino acid-longer variant of no known function have been recently cloned. We report that both proteins, henceforth referred to as ACF64 and ACF65, supported APOBEC-1 (the catalytic subunit of the editosome) equivalently in editing of apoB mRNA. They are encoded by a single 82-kb gene on chromosome 10. The transcripts are encoded by 15 exons that are expressed from a tissue-specific promoter minimally contained within the -0.33-kb DNA sequence. ACF64 and ACF65 mRNAs are expressed in both liver and intestinal cells in an approximate 1:4 ratio. Exon 11 is alternatively spliced to include or exclude 24 nucleotides of exon 12, thereby encoding ACF65 and ACF64, respectively. Recognition motifs for the serine/arginine rich (SR) proteins SC35, SRp40, SRp55, and SF2/ASF involved in alternative RNA splicing were predicted in exon 12. Overexpression of these SR proteins in liver cells demonstrated that alternative splicing of a minigene-derived transcript to express ACF65 was enhanced 6-fold by SRp40. The data account for the expression of two editing factors and provide a possible explanation for their different levels of expression.
AB - Apolipoprotein B (apoB) mRNA editing involves site-specific deamination of cytidine to form uridine, resulting in the production of an in-frame stop codon. Protein translated from edited mRNA is associated with a reduced risk of atherosclerosis, and hence the protein factors that regulate hepatic apoB mRNA editing are of interest. A human protein essential for apoB mRNA editing and an eight-amino acid-longer variant of no known function have been recently cloned. We report that both proteins, henceforth referred to as ACF64 and ACF65, supported APOBEC-1 (the catalytic subunit of the editosome) equivalently in editing of apoB mRNA. They are encoded by a single 82-kb gene on chromosome 10. The transcripts are encoded by 15 exons that are expressed from a tissue-specific promoter minimally contained within the -0.33-kb DNA sequence. ACF64 and ACF65 mRNAs are expressed in both liver and intestinal cells in an approximate 1:4 ratio. Exon 11 is alternatively spliced to include or exclude 24 nucleotides of exon 12, thereby encoding ACF65 and ACF64, respectively. Recognition motifs for the serine/arginine rich (SR) proteins SC35, SRp40, SRp55, and SF2/ASF involved in alternative RNA splicing were predicted in exon 12. Overexpression of these SR proteins in liver cells demonstrated that alternative splicing of a minigene-derived transcript to express ACF65 was enhanced 6-fold by SRp40. The data account for the expression of two editing factors and provide a possible explanation for their different levels of expression.
UR - http://www.scopus.com/inward/record.url?scp=0037066788&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037066788&partnerID=8YFLogxK
U2 - 10.1074/jbc.M111337200
DO - 10.1074/jbc.M111337200
M3 - Article
C2 - 11815617
AN - SCOPUS:0037066788
SN - 0021-9258
VL - 277
SP - 12703
EP - 12709
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 15
ER -