TY - JOUR
T1 - Type 2 diabetic mice demonstrate slender long bones with increased fragility secondary to increased osteoclastogenesis
AU - Kawashima, Yuki
AU - Fritton, J. Christopher
AU - Yakar, Shoshana
AU - Epstein, Sol
AU - Schaffler, Mitchell B.
AU - Jepsen, Karl J.
AU - LeRoith, Derek
N1 - Funding Information:
We are indebted to Ken Inagaki, Damien Laudier, Valerie Williams, David Berman, and Bin Hu for their help on this project. Financial support received from funding agencies in the United States including the Mount Sinai School of Medicine (Steckler Fund Grant to DL), NIAMS (NIH Grants AR41210 to MBS, AR44927 to KJJ and AR054919 and AR055141 to SY), National Space Biomedical Research Institute (NASA Grant NCC 9-58 to MBS) and the Charles H. Revson Foundation (Fellowship to JCF). The statements made and views expressed, however, are solely the responsibility of the authors.
PY - 2009/4
Y1 - 2009/4
N2 - Type 2 diabetics often demonstrate normal or increased bone mineral density, yet are at increased risk for bone fracture. Furthermore, the anti-diabetic oral thiazolidinediones (PPARγ agonists) have recently been shown to increase bone fractures. To investigate the etiology of possible structural and/or material quality defects, we have utilized a well-described mouse model of Type 2 diabetes (MKR). MKR mice exhibit muscle hypoplasia from birth with reduced mass by the pre-diabetic age of 3 weeks. A compensatory hyperplasia ensues during early (5 weeks) development; by 6-8 weeks muscle is normal in structure and function. Adult whole-bone mechanical properties were determined by 4-point bending to test susceptibility to fracture. Micro-computed tomography and cortical bone histomorphometry were utilized to assess static and dynamic indices of structure, bone formation and resorption. Osteoclastogenesis assays were performed from bone marrow-derived non-adherent cells. The 8-week and 16-week, but not 3-week, male MKR had slender (i.e., narrow relative to length) femurs that were 20% weaker (p < 0.05) relative to WT control femurs. Tissue-level mineral density was not affected. Impaired periosteal expansion during early diabetes resulted from 250% more, and 40% less of the cortical bone surface undergoing resorption and formation, respectively (p < 0.05). Greater resorption persisted in adult MKR on both periosteal and endosteal surfaces. Differences were not limited to cortical bone as the distal femur metaphysis of 16 week MKR contained less trabecular bone and trabecular separation was greater than in WT by 60% (p < 0.05). At all ages, MKR marrow-derived cultures demonstrated the ability for enhanced osteoclast differentiation in response to M-CSF and RANK-L. Taken together, the MKR mouse model suggests that skeletal fragility in Type 2 diabetes may arise from reduced transverse bone accrual and increased osteoclastogenesis during growth that is accelerated by the diabetic/hyperinsulinemic milieu. Further, these results emphasize the importance of evaluating diabetic bone based on morphology in addition to bone mass.
AB - Type 2 diabetics often demonstrate normal or increased bone mineral density, yet are at increased risk for bone fracture. Furthermore, the anti-diabetic oral thiazolidinediones (PPARγ agonists) have recently been shown to increase bone fractures. To investigate the etiology of possible structural and/or material quality defects, we have utilized a well-described mouse model of Type 2 diabetes (MKR). MKR mice exhibit muscle hypoplasia from birth with reduced mass by the pre-diabetic age of 3 weeks. A compensatory hyperplasia ensues during early (5 weeks) development; by 6-8 weeks muscle is normal in structure and function. Adult whole-bone mechanical properties were determined by 4-point bending to test susceptibility to fracture. Micro-computed tomography and cortical bone histomorphometry were utilized to assess static and dynamic indices of structure, bone formation and resorption. Osteoclastogenesis assays were performed from bone marrow-derived non-adherent cells. The 8-week and 16-week, but not 3-week, male MKR had slender (i.e., narrow relative to length) femurs that were 20% weaker (p < 0.05) relative to WT control femurs. Tissue-level mineral density was not affected. Impaired periosteal expansion during early diabetes resulted from 250% more, and 40% less of the cortical bone surface undergoing resorption and formation, respectively (p < 0.05). Greater resorption persisted in adult MKR on both periosteal and endosteal surfaces. Differences were not limited to cortical bone as the distal femur metaphysis of 16 week MKR contained less trabecular bone and trabecular separation was greater than in WT by 60% (p < 0.05). At all ages, MKR marrow-derived cultures demonstrated the ability for enhanced osteoclast differentiation in response to M-CSF and RANK-L. Taken together, the MKR mouse model suggests that skeletal fragility in Type 2 diabetes may arise from reduced transverse bone accrual and increased osteoclastogenesis during growth that is accelerated by the diabetic/hyperinsulinemic milieu. Further, these results emphasize the importance of evaluating diabetic bone based on morphology in addition to bone mass.
KW - Bone fragility
KW - Bone histomorphometry
KW - Mouse model
KW - Osteoclastogenesis
KW - Type 2 diabetes
UR - http://www.scopus.com/inward/record.url?scp=61749095381&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=61749095381&partnerID=8YFLogxK
U2 - 10.1016/j.bone.2008.12.012
DO - 10.1016/j.bone.2008.12.012
M3 - Article
C2 - 19150422
AN - SCOPUS:61749095381
SN - 8756-3282
VL - 44
SP - 648
EP - 655
JO - Bone
JF - Bone
IS - 4
ER -