TY - JOUR
T1 - Use of an oligoribonucleotide containing the polypurine tract sequence as a primer by HIV reverse transcriptase
AU - Fuentes, G. M.
AU - Rodriguez-Rodriguez, L.
AU - Fay, P. J.
AU - Bambara, R. A.
PY - 1995
Y1 - 1995
N2 - A primary site for initiation of plus strand DNA synthesis in human immunodeficiency virus (HIV) corresponds to a 19-nucleotide-long purine rich sequence located just upstream of the U3 region, designated the polypurine tract (PPT). The HIV reverse transcriptase (RT) uses its RNase H activity to cut the genomic RNA after minus strand DNA synthesis. A plus strand PPT primer is formed, extended, and then removed. In vitro, the HIV-RT recognizes this primer specifically, using it much more efficiently than other RNA primers. However, the PPT still primes significantly less efficiently than DNA primers. The 19-nucleotide PPT primer is partially resistant to degradation when compared with other oligoribonucleotides. Prior to initiation of DNA synthesis, several nucleotides are removed by the RT from the 3' ends of some of the PPT primers. Cleavage is enhanced in the absence of dNTPs. We suggest that DNA synthesis suppresses primer degradation, so that primer extension and cleavage occur in proper sequence. As a result of 3' end degradation, PPT elongation products contain 5'-RNA segments from 16 to 19 nucleotides in length. These shorter segments are also generated from a longer transcript containing the PPT sequence, indicating that they are not created as a result of binding of the RT to the 5' end of the PPT oligoribonucleotide. Full-length and shorter versions of the PPT primers are cleaved from the extended DNA by RT. These experiments show that HIV-RT has a specificity to generate a primer in the region of the PPT but that the ends of the primer are not well defined.
AB - A primary site for initiation of plus strand DNA synthesis in human immunodeficiency virus (HIV) corresponds to a 19-nucleotide-long purine rich sequence located just upstream of the U3 region, designated the polypurine tract (PPT). The HIV reverse transcriptase (RT) uses its RNase H activity to cut the genomic RNA after minus strand DNA synthesis. A plus strand PPT primer is formed, extended, and then removed. In vitro, the HIV-RT recognizes this primer specifically, using it much more efficiently than other RNA primers. However, the PPT still primes significantly less efficiently than DNA primers. The 19-nucleotide PPT primer is partially resistant to degradation when compared with other oligoribonucleotides. Prior to initiation of DNA synthesis, several nucleotides are removed by the RT from the 3' ends of some of the PPT primers. Cleavage is enhanced in the absence of dNTPs. We suggest that DNA synthesis suppresses primer degradation, so that primer extension and cleavage occur in proper sequence. As a result of 3' end degradation, PPT elongation products contain 5'-RNA segments from 16 to 19 nucleotides in length. These shorter segments are also generated from a longer transcript containing the PPT sequence, indicating that they are not created as a result of binding of the RT to the 5' end of the PPT oligoribonucleotide. Full-length and shorter versions of the PPT primers are cleaved from the extended DNA by RT. These experiments show that HIV-RT has a specificity to generate a primer in the region of the PPT but that the ends of the primer are not well defined.
UR - http://www.scopus.com/inward/record.url?scp=0028884345&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028884345&partnerID=8YFLogxK
U2 - 10.1074/jbc.270.47.28169
DO - 10.1074/jbc.270.47.28169
M3 - Article
C2 - 7499308
AN - SCOPUS:0028884345
SN - 0021-9258
VL - 270
SP - 28169
EP - 28176
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 47
ER -