TY - JOUR
T1 - Very low density lipoprotein assembly is required for cAMP-responsive element-binding protein H processing and hepatic apolipoprotein A-IV expression
AU - Cheng, Dongmei
AU - Xu, Xu
AU - Simon, Trang
AU - Boudyguina, Elena
AU - Deng, Zhiyong
AU - VerHague, Melissa
AU - Lee, Ann Hwee
AU - Shelness, Gregory S.
AU - Weinberg, Richard B.
AU - Parks, John S.
AU - Carman, George
N1 - Funding Information:
This work was supported in part by National Institutes of Health Grants R01 HL 119983 (to J. S. P.) and R01 DK089211 (to A. L.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
PY - 2016/11/4
Y1 - 2016/11/4
N2 - Hepatic apolipoprotein A-IV (apoA-IV) expression is correlated with hepatic triglyceride (TG) content in mouse models of chronic hepatosteatosis, and steatosis-induced hepatic apoA-IV gene expression is regulated by nuclear transcription factor cAMP-responsive element-binding protein H (CREBH) processing. To define what aspects of TG homeostasis regulate hepatic CREBH processing and apoA-IV gene expression, several mouse models of attenuated VLDL particle assembly were subjected to acute hepatosteatosis induced by an overnight fast or short term ketogenic diet feeding. Compared with chow-fed C57BL/6 mice, fasted or ketogenic diet-fed mice displayed increased hepatic TG content, which was highly correlated (r2 = 0.95) with apoA-IV gene expression, and secretion of larger, TG-enriched VLDL, despite a lower rate of TG secretion and a similar or reduced rate of apoB100 secretion. When VLDL particle assembly and secretion was inhibited by hepatic shRNA-in-duced apoB silencing or genetic or pharmacologic reduction in microsomal triglyceride transfer protein (MTP) activity, hepatic TG content increased dramatically; however, CREBH processing and apoA-IV gene expression were attenuated compared with controls. Adenovirus-mediated reconstitution of MTP expression proportionately restored CREBH processing and apoA-IV expression in liver-specific MTP knock-out mice. These results reveal that hepatic TG content, per se, does not regulate CREBH processing. Instead, TG mobilization into the endoplasmic reticulum for nascent VLDL particle assembly activates CREBH processing and enhances apoA-IV gene expression in the setting of acute steatosis. We conclude that VLDL assembly and CREBH activation play key roles in the response to hepatic steatosis by up-regulating apoA-IV and promoting assembly and secretion of larger, more TG-enriched VLDL particles.
AB - Hepatic apolipoprotein A-IV (apoA-IV) expression is correlated with hepatic triglyceride (TG) content in mouse models of chronic hepatosteatosis, and steatosis-induced hepatic apoA-IV gene expression is regulated by nuclear transcription factor cAMP-responsive element-binding protein H (CREBH) processing. To define what aspects of TG homeostasis regulate hepatic CREBH processing and apoA-IV gene expression, several mouse models of attenuated VLDL particle assembly were subjected to acute hepatosteatosis induced by an overnight fast or short term ketogenic diet feeding. Compared with chow-fed C57BL/6 mice, fasted or ketogenic diet-fed mice displayed increased hepatic TG content, which was highly correlated (r2 = 0.95) with apoA-IV gene expression, and secretion of larger, TG-enriched VLDL, despite a lower rate of TG secretion and a similar or reduced rate of apoB100 secretion. When VLDL particle assembly and secretion was inhibited by hepatic shRNA-in-duced apoB silencing or genetic or pharmacologic reduction in microsomal triglyceride transfer protein (MTP) activity, hepatic TG content increased dramatically; however, CREBH processing and apoA-IV gene expression were attenuated compared with controls. Adenovirus-mediated reconstitution of MTP expression proportionately restored CREBH processing and apoA-IV expression in liver-specific MTP knock-out mice. These results reveal that hepatic TG content, per se, does not regulate CREBH processing. Instead, TG mobilization into the endoplasmic reticulum for nascent VLDL particle assembly activates CREBH processing and enhances apoA-IV gene expression in the setting of acute steatosis. We conclude that VLDL assembly and CREBH activation play key roles in the response to hepatic steatosis by up-regulating apoA-IV and promoting assembly and secretion of larger, more TG-enriched VLDL particles.
UR - http://www.scopus.com/inward/record.url?scp=84994339099&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84994339099&partnerID=8YFLogxK
U2 - 10.1074/jbc.M116.749283
DO - 10.1074/jbc.M116.749283
M3 - Article
C2 - 27655915
AN - SCOPUS:84994339099
VL - 291
SP - 23793
EP - 23803
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 45
ER -