TY - CHAP
T1 - Volcanism and geochemistry in central America
T2 - Progress and problems
AU - Carr, M. J.
AU - Feigenson, M. D.
AU - Patino, L. C.
AU - Walker, J. A.
N1 - Publisher Copyright:
© 2003 by the American Geophysical Union.
PY - 2004
Y1 - 2004
N2 - Most Central American volcanoes occur in an impressive volcanic front that trends parallel to the strike of the subducting Cocos Plate. The volcanic front is a chain, made of right-stepping, linear segments, 100 to 300 Km in length. Volcanoes cluster into centers, whose spacing is random but averages about 27 Km. These closely spaced, easily accessible volcanic centers allow mapping of geochemical variations along the volcanic front. Abundant back-arc volcanoes in southeast Guatemala and central Honduras allow two cross-arc transects. Several element and isotope ratios (e.g. Ba/La, U/Th, B/La,10Be/9Be,87Sr/86Sr) that are thought to signal subducted marine sediments or altered MORB consistently define a chevron pattern along the arc, with its maximum in Nicaragua. Ba/La, a particularly sensitive signal, is 130 at the maximum in Nicaragua but decreases out on the limbs to 40 in Guatemala and 20 in Costa Rica, which is just above the nominal mantle value of 15. This high amplitude regional variation, roughly symmetrical about Nicaragua, contrasts with the near constancy, or small gradient, in several plate tectonic parameters such as convergence rate, age of the subducting Cocos Plate, and thickness and type of subducted sediment. The large geochemical changes over relatively short distances make Central America an important margin for seeking the tectonic causes of geochemical variations; the regional variation has both a high amplitude and structure, including flat areas and gradients. The geochemical database continues to improve and is already adequate to compare to tectonic models with length scales of 100 Km or longer.
AB - Most Central American volcanoes occur in an impressive volcanic front that trends parallel to the strike of the subducting Cocos Plate. The volcanic front is a chain, made of right-stepping, linear segments, 100 to 300 Km in length. Volcanoes cluster into centers, whose spacing is random but averages about 27 Km. These closely spaced, easily accessible volcanic centers allow mapping of geochemical variations along the volcanic front. Abundant back-arc volcanoes in southeast Guatemala and central Honduras allow two cross-arc transects. Several element and isotope ratios (e.g. Ba/La, U/Th, B/La,10Be/9Be,87Sr/86Sr) that are thought to signal subducted marine sediments or altered MORB consistently define a chevron pattern along the arc, with its maximum in Nicaragua. Ba/La, a particularly sensitive signal, is 130 at the maximum in Nicaragua but decreases out on the limbs to 40 in Guatemala and 20 in Costa Rica, which is just above the nominal mantle value of 15. This high amplitude regional variation, roughly symmetrical about Nicaragua, contrasts with the near constancy, or small gradient, in several plate tectonic parameters such as convergence rate, age of the subducting Cocos Plate, and thickness and type of subducted sediment. The large geochemical changes over relatively short distances make Central America an important margin for seeking the tectonic causes of geochemical variations; the regional variation has both a high amplitude and structure, including flat areas and gradients. The geochemical database continues to improve and is already adequate to compare to tectonic models with length scales of 100 Km or longer.
UR - http://www.scopus.com/inward/record.url?scp=85016084540&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85016084540&partnerID=8YFLogxK
U2 - 10.1029/138GM09
DO - 10.1029/138GM09
M3 - Chapter
AN - SCOPUS:85016084540
SN - 9780875909974
T3 - Geophysical Monograph Series
SP - 153
EP - 174
BT - Inside the Subduction Factory, 2004
A2 - Eiler, John
PB - Blackwell Publishing Ltd
ER -