Wearable Transcutaneous Microsensor for Continuous “in situ” Monitoring of Biomarkers

Mehdi Javanmard (Inventor), Pengfei Xie (Inventor), Mark Allen (Inventor), Wen Shen (Inventor), Naixin Song (Inventor)

Research output: Innovation

Abstract

<span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> </span> <p class="Normal Caption" style="margin-top: 8px;line-height: 1.15;text-align: center;"> <span style="font-family: 'Arial';font-style: Normal;font-weight: normal;font-size: 13.33px;"> A schematic view of the label-free flexible microsensor and its insertion into the skin. </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> </span> </p> <p class="Normal" style="line-height: 1.15;"> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> </span> <span style="font-family: 'Arial';font-style: Normal;font-weight: bold;font-size: 18.67px;"> Invention Summary: </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> The ability to measure peptide/protein biomarkers in bodily fluids “ </span> <span style="font-family: 'Arial';font-style: Italic;font-size: 18.67px;"> in situ </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> ” can enable continuous health monitoring. The current gold-standard for protein quantification in laboratory tests is enzyme linked immunosorbent assay (ELISA), which typically relies on optical fluorescence, and labeling of complementary molecules, resulting in lengthier and more costly testing. </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> A team of scientists from Rutgers and U Penn has invented a minimally invasive, flexible, transcutaneous microsensor that is capable of performing “ </span> <span style="font-family: 'Arial';font-style: Italic;font-size: 18.67px;"> in situ </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> ” detection of peptide/protein biomarkers present in the human blood stream while overcoming the limitations of traditional ELISA. This microsensor can be inserted subcutaneously to come into direct contact with the blood stream. The tip of the needle utilizes a micro-well array configuration, when in contact with a peptide/protein biomarker of interest in the blood, binding of the biomarker to the capture molecule (e.g. an antibody) immobilized in the micro-wells causes a change of impedance in the micro-wells. With a unique built-in mechanism, continuous detection of the presence of biomarkers in the blood stream can be performed. Such real-time detection of the target biomarker can be achieved up to femto molar (10 </span> <sup> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> -15 </span> </sup> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> mol/L) sensitivity. The inventors have demonstrated the capability of a prototype microsensor to detect the presence of TNF-α in skin phantom at 1 nM (10 </span> <sup> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> -9 </span> </sup> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> mol/L) sensitivity. </span> </p> <p class="Normal" style="line-height: 1.15;"> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> </span> <span style="font-family: 'Arial';font-style: Normal;font-weight: bold;font-size: 18.67px;"> Market Applications: </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> “ </span> <span style="font-family: 'Arial';font-style: Italic;font-size: 18.67px;"> in situ </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> ” diagnostics for minimally invasive transcutaneous monitoring of proteins/cytokines/hormones and other biomarkers present in blood. </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-weight: bold;font-size: 18.67px;"> Advantages: </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> </span> </p> <ul style="list-style-type:disc"> <li class="Normal" style="line-height: 1.15;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> Flexible microneedle </span> </li> <li class="Normal" style="margin-right: 0px;line-height: 1.15;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> Minimally invasive </span> </li> <li class="Normal" style="margin-right: 0px;line-height: 1.15;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> Realtime monitoring of blood proteins/cytokines </span> </li> <li class="Normal" style="margin-right: 0px;line-height: 1.15;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> Label-free detection using changes in impedance as the read out </span> </li> <li class="Normal" style="margin-right: 0px;line-height: 1.15;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> Works under high salt condition (e.g. in serum) </span> </li> <li class="Normal" style="margin-right: 0px;line-height: 1.15;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> Highly sensitive (10 </span> <sup> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> -15 </span> </sup> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> mol/L) </span> </li> </ul> <p class="Normal" style="line-height: 1.15;"> <span style="font-family: 'Arial';font-style: Normal;font-weight: bold;font-size: 18.67px;"> Intellectual Property &amp; Development Status: </span> <span style="font-family: 'Arial';font-style: Normal;font-weight: bold;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-weight: bold;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> Patent Pending. Available for licensing and/or research collaboration. </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-weight: bold;font-size: 18.67px;"> Publication: </span> <span style="font-family: 'Arial';font-style: Normal;font-weight: bold;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-weight: bold;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> Song N, Xie P, Shen W, Javanmard M and Allen MF. Microwell-array on a flexible needle:  A transcutaneous insertable impedance sensor for label-free cytokine detection. MEMS 2018 IEEE. </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> <br/> </span> <a href="https://ieeexplore.ieee.org/abstract/document/8346570/" target="_blank"> <span class="Hyperlink"> https://ieeexplore.ieee.org/abstract/document/8346570/ </span> </a> <span style="font-family: 'Arial';font-style: Normal;font-size: 18.67px;"> </span> </p>
Original languageEnglish (US)
StatePublished - Jun 2018

Fingerprint

Biomarkers
Electric Impedance
Cytokines
Proteins
Peptides
Needles
Enzyme-Linked Immunosorbent Assay
Inventors
Micro-Electrical-Mechanical Systems
Immobilized Antibodies
Intellectual Property
Skin
Licensure
Music
Gold
Publications
Blood Proteins
Salts
Fluorescence
Hormones

Cite this

Javanmard, Mehdi (Inventor) ; Xie, Pengfei (Inventor) ; Allen, Mark (Inventor) ; Shen, Wen (Inventor) ; Song, Naixin (Inventor). / Wearable Transcutaneous Microsensor for Continuous “in situ” Monitoring of Biomarkers.
@misc{bb6016ce18c24cc49f9ee0f528f0781d,
title = "Wearable Transcutaneous Microsensor for Continuous “in situ” Monitoring of Biomarkers",
abstract = "A schematic view of the label-free flexible microsensor and its insertion into the skin. Invention Summary: The ability to measure peptide/protein biomarkers in bodily fluids “ in situ ” can enable continuous health monitoring. The current gold-standard for protein quantification in laboratory tests is enzyme linked immunosorbent assay (ELISA), which typically relies on optical fluorescence, and labeling of complementary molecules, resulting in lengthier and more costly testing. A team of scientists from Rutgers and U Penn has invented a minimally invasive, flexible, transcutaneous microsensor that is capable of performing “ in situ ” detection of peptide/protein biomarkers present in the human blood stream while overcoming the limitations of traditional ELISA. This microsensor can be inserted subcutaneously to come into direct contact with the blood stream. The tip of the needle utilizes a micro-well array configuration, when in contact with a peptide/protein biomarker of interest in the blood, binding of the biomarker to the capture molecule (e.g. an antibody) immobilized in the micro-wells causes a change of impedance in the micro-wells. With a unique built-in mechanism, continuous detection of the presence of biomarkers in the blood stream can be performed. Such real-time detection of the target biomarker can be achieved up to femto molar (10 -15 mol/L) sensitivity. The inventors have demonstrated the capability of a prototype microsensor to detect the presence of TNF-α in skin phantom at 1 nM (10 -9 mol/L) sensitivity. Market Applications: “ in situ ” diagnostics for minimally invasive transcutaneous monitoring of proteins/cytokines/hormones and other biomarkers present in blood. Advantages: Flexible microneedle Minimally invasive Realtime monitoring of blood proteins/cytokines Label-free detection using changes in impedance as the read out Works under high salt condition (e.g. in serum) Highly sensitive (10 -15 mol/L) Intellectual Property & Development Status: Patent Pending. Available for licensing and/or research collaboration. Publication: Song N, Xie P, Shen W, Javanmard M and Allen MF. Microwell-array on a flexible needle:  A transcutaneous insertable impedance sensor for label-free cytokine detection. MEMS 2018 IEEE. https://ieeexplore.ieee.org/abstract/document/8346570/",
author = "Mehdi Javanmard and Pengfei Xie and Mark Allen and Wen Shen and Naixin Song",
year = "2018",
month = "6",
language = "English (US)",
type = "Patent",

}

Wearable Transcutaneous Microsensor for Continuous “in situ” Monitoring of Biomarkers. / Javanmard, Mehdi (Inventor); Xie, Pengfei (Inventor); Allen, Mark (Inventor); Shen, Wen (Inventor); Song, Naixin (Inventor).

Research output: Innovation

TY - PAT

T1 - Wearable Transcutaneous Microsensor for Continuous “in situ” Monitoring of Biomarkers

AU - Javanmard, Mehdi

AU - Xie, Pengfei

AU - Allen, Mark

AU - Shen, Wen

AU - Song, Naixin

PY - 2018/6

Y1 - 2018/6

N2 - A schematic view of the label-free flexible microsensor and its insertion into the skin. Invention Summary: The ability to measure peptide/protein biomarkers in bodily fluids “ in situ ” can enable continuous health monitoring. The current gold-standard for protein quantification in laboratory tests is enzyme linked immunosorbent assay (ELISA), which typically relies on optical fluorescence, and labeling of complementary molecules, resulting in lengthier and more costly testing. A team of scientists from Rutgers and U Penn has invented a minimally invasive, flexible, transcutaneous microsensor that is capable of performing “ in situ ” detection of peptide/protein biomarkers present in the human blood stream while overcoming the limitations of traditional ELISA. This microsensor can be inserted subcutaneously to come into direct contact with the blood stream. The tip of the needle utilizes a micro-well array configuration, when in contact with a peptide/protein biomarker of interest in the blood, binding of the biomarker to the capture molecule (e.g. an antibody) immobilized in the micro-wells causes a change of impedance in the micro-wells. With a unique built-in mechanism, continuous detection of the presence of biomarkers in the blood stream can be performed. Such real-time detection of the target biomarker can be achieved up to femto molar (10 -15 mol/L) sensitivity. The inventors have demonstrated the capability of a prototype microsensor to detect the presence of TNF-α in skin phantom at 1 nM (10 -9 mol/L) sensitivity. Market Applications: “ in situ ” diagnostics for minimally invasive transcutaneous monitoring of proteins/cytokines/hormones and other biomarkers present in blood. Advantages: Flexible microneedle Minimally invasive Realtime monitoring of blood proteins/cytokines Label-free detection using changes in impedance as the read out Works under high salt condition (e.g. in serum) Highly sensitive (10 -15 mol/L) Intellectual Property & Development Status: Patent Pending. Available for licensing and/or research collaboration. Publication: Song N, Xie P, Shen W, Javanmard M and Allen MF. Microwell-array on a flexible needle:  A transcutaneous insertable impedance sensor for label-free cytokine detection. MEMS 2018 IEEE. https://ieeexplore.ieee.org/abstract/document/8346570/

AB - A schematic view of the label-free flexible microsensor and its insertion into the skin. Invention Summary: The ability to measure peptide/protein biomarkers in bodily fluids “ in situ ” can enable continuous health monitoring. The current gold-standard for protein quantification in laboratory tests is enzyme linked immunosorbent assay (ELISA), which typically relies on optical fluorescence, and labeling of complementary molecules, resulting in lengthier and more costly testing. A team of scientists from Rutgers and U Penn has invented a minimally invasive, flexible, transcutaneous microsensor that is capable of performing “ in situ ” detection of peptide/protein biomarkers present in the human blood stream while overcoming the limitations of traditional ELISA. This microsensor can be inserted subcutaneously to come into direct contact with the blood stream. The tip of the needle utilizes a micro-well array configuration, when in contact with a peptide/protein biomarker of interest in the blood, binding of the biomarker to the capture molecule (e.g. an antibody) immobilized in the micro-wells causes a change of impedance in the micro-wells. With a unique built-in mechanism, continuous detection of the presence of biomarkers in the blood stream can be performed. Such real-time detection of the target biomarker can be achieved up to femto molar (10 -15 mol/L) sensitivity. The inventors have demonstrated the capability of a prototype microsensor to detect the presence of TNF-α in skin phantom at 1 nM (10 -9 mol/L) sensitivity. Market Applications: “ in situ ” diagnostics for minimally invasive transcutaneous monitoring of proteins/cytokines/hormones and other biomarkers present in blood. Advantages: Flexible microneedle Minimally invasive Realtime monitoring of blood proteins/cytokines Label-free detection using changes in impedance as the read out Works under high salt condition (e.g. in serum) Highly sensitive (10 -15 mol/L) Intellectual Property & Development Status: Patent Pending. Available for licensing and/or research collaboration. Publication: Song N, Xie P, Shen W, Javanmard M and Allen MF. Microwell-array on a flexible needle:  A transcutaneous insertable impedance sensor for label-free cytokine detection. MEMS 2018 IEEE. https://ieeexplore.ieee.org/abstract/document/8346570/

UR - http://rutgers.technologypublisher.com/tech?title=Wearable_Transcutaneous_Microsensor_for_Continuous_%e2%80%9cin_situ%e2%80%9d_Monitoring_of_Biomarkers

M3 - Innovation

ER -