What can be efficiently reduced to the Kolmogorov-random strings?

Eric Allender, Harry Buhrman, Michal Koucký

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

We investigate the question of whether one can characterize complexity classes (such as PSPACE or NEXP) in terms of efficient reducibility to the set of Kolmogorov-random strings RC. This question arises because PSPACE ⊆ PRC and NEXP ⊆ NPRC, and no larger complexity classes are known to be reducible to RC in this way. We show that this question cannot be posed without explicitly dealing with issues raised by the choice of universal machine in the definition of Kolmogorov complexity. What follows is a list of some of our main results. • Although Kummer showed that, for every universal machine U there is a time bound t such that the halting problem is disjunctive truth-table reducible to RCU in time t, there is no such time bound t that suffices for every universal machine U. We also show that, for some machines U, the disjunctive reduction can be computed in as little as doubly-exponential time. • Although for every universal machine U, there are very complex sets that are ≤dttP-reducible to RCU, it is nonetheless true that P = REC ∩ ∩U {A: A ≤dttP RCU}. (A similar statement holds for parity-truth-table reductions.) • Any decidable set that is polynomial-time monotone-truth-table reducible to RC is in P/poly. • Any decidable set that is polynomial-time truth-table reducible to RC via a reduction that asks at most f (n) queries on inputs of size n lies in P/(f (n)2f(n)3logf(n)).

Original languageEnglish (US)
Pages (from-to)2-19
Number of pages18
JournalAnnals of Pure and Applied Logic
Volume138
Issue number1-3
DOIs
StatePublished - Mar 2006

All Science Journal Classification (ASJC) codes

  • Logic

Keywords

  • Computational complexity
  • Kolmogorov complexity
  • Polynomial-time reducibility

Fingerprint

Dive into the research topics of 'What can be efficiently reduced to the Kolmogorov-random strings?'. Together they form a unique fingerprint.

Cite this